Boundedness of Spherical Fano Varieties

نویسنده

  • VALERY ALEXEEV
چکیده

Classically, G. Fano proved that the family of (smooth, anticanonically embedded) Fano 3-dimensional varieties is bounded, and moreover provided their classification, later completed by V.A. Iskovskikh, S. Mukai and S. Mori. For singular Fano varieties with log terminal singularities, there are two basic boundedness conjectures: Index Boundedness and the much stronger ǫ-lt Boundedness. The ǫ-lt Boundedness was known only in two cases: in dimension 2 [Ale94] and for toric varieties [BB93]. In this paper we prove it for a significantly less “elementary” class, that of spherical varieties. In addition to an argument adapted from the toric case, the proof contains quite a few new twists. In Section 5, we introduce a new invariant of a spherical subgroup H in a reductive group G which measures how nice an equivariant Fano compactification of G/H there exists.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Birational Boundedness of Fano Fibrations

We investigate birational boundedness of Fano varieties and Fano fibrations. We establish an inductive step towards birational boundedness of Fano fibrations via conjectures related to boundedness of Fano varieties and Fano fibrations. As corollaries, we provide approaches towards birational boundedness and boundedness of anti-canonical volumes of varieties of -Fano type. Furthermore, we show b...

متن کامل

8 M ar 1 99 9 Boundedness of Q - Fano varieties with Picard number one

We prove birational boundedness of Q-Fano varieties with Picard number one in arbitrary dimension.

متن کامل

2 1 M ay 1 99 9 Boundedness of Q - Fano varieties with Picard number one Hajime TSUJI

We prove birational boundedness of Q-Fano varieties with Picard number one in arbitrary dimension.

متن کامل

m at h . A G ] 1 6 M ar 1 99 9 Boundedness of Q - Fano varieties with Picard number one Hajime TSUJI

We prove birational boundedness of Q-Fano varieties with Picard number one in arbitrary dimension.

متن کامل

Boundedness of Fano Threefolds with Log-terminal Singularities of given Index

We prove that all Fano threefolds with log-terminal singularities of given index belong to finitely many families. This result was previously obtained by the author in the case of unipolar Fano varieties. [email protected]

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003